Backend Usage
Learn how to use the MIRIX backend directly through Python code for maximum flexibility and control over your personal assistant.
Getting Started
Initialize the Agent
First, create and initialize your MIRIX agent:
from mirix.agent import AgentWrapper
# Initialize agent with configuration
agent = AgentWrapper("./configs/mirix.yaml")
Configuration File
Make sure your mirix.yaml
configuration file and .env
file are properly set up before initializing the agent.
Custom Models
Want to use your own models? Check out our Custom Models Guide to learn how to serve models with vllm and integrate them with MIRIX.
Python SDK (Simplified Interface)
For a simpler, more streamlined experience, you can use the MIRIX Python SDK. This approach is perfect for quick prototyping and straightforward use cases.
Quick Start with SDK
from mirix import Mirix
# Initialize memory agent (defaults to Google Gemini 2.0 Flash)
memory_agent = Mirix(api_key="your-google-api-key")
# Add memories
memory_agent.add("The moon now has a president")
memory_agent.add("John loves Italian food and is allergic to peanuts")
# Chat with memory context
response = memory_agent.chat("Does the moon have a president?")
print(response) # "Yes, according to my memory, the moon has a president."
response = memory_agent.chat("What does John like to eat?")
print(response) # "John loves Italian food. However, he's allergic to peanuts."
SDK Initialization Options
The SDK supports various initialization parameters for different use cases:
from mirix import Mirix
# Basic initialization (Google Gemini)
agent = Mirix(api_key="your-google-api-key")
# Use OpenAI models
agent = Mirix(
api_key="your-openai-api-key",
model_provider="openai",
model="gpt-4o"
)
# Use Anthropic Claude
agent = Mirix(
api_key="your-anthropic-api-key",
model_provider="anthropic",
model="claude-3-sonnet"
)
# Use custom configuration file (default to `gemini-flash`)
agent = Mirix(
api_key="your-gemini-api-key",
config_path="./configs/mirix_custom_model.yaml"
)
# Initialize with existing backup
agent = Mirix(
api_key="your-api-key",
load_from="./my_backup_directory"
)
# Override model in default config
agent = Mirix(
api_key="your-gemini-api-key",
model="gemini-2.0-flash" # Override default model
)
Supported Model Providers
Provider | model_provider Value |
Environment Variable Set |
---|---|---|
Google Gemini | "google_ai" , "google" , "gemini" |
GEMINI_API_KEY |
OpenAI | "openai" , "gpt" |
OPENAI_API_KEY |
Anthropic | "anthropic" , "claude" |
ANTHROPIC_API_KEY |
Custom | Any custom string | {PROVIDER}_API_KEY |
SDK Usage Examples
Building a Personal Assistant
from mirix import Mirix
# Initialize with your API key
assistant = Mirix(api_key="your-google-api-key")
# Store personal information
assistant.add("I prefer coffee over tea")
assistant.add("My work hours are 9 AM to 5 PM")
assistant.add("Important meeting with client on Friday at 2 PM")
# Query your assistant
response = assistant.chat("What's my schedule like this week?")
print(response)
response = assistant.chat("What drink do I prefer?")
print(response)
Knowledge Base Building
# Create a knowledge base about a project
project_memory = Mirix(api_key="your-google-api-key")
# Add project information
project_memory.add("Project name: MIRIX Documentation")
project_memory.add("Tech stack: Python, MkDocs, Material theme")
project_memory.add("Team members: Alice (PM), Bob (Dev), Carol (Designer)")
project_memory.add("Deadline: End of December 2024")
# Query the knowledge base
response = project_memory.chat("Who are the team members?")
print(response)
response = project_memory.chat("What technology are we using?")
print(response)
SDK Memory Management
Clearing Memory and Conversation History
# Clear conversation history while keeping memories
result = agent.clear_conversation_history()
if result['success']:
print(f"Cleared {result['messages_deleted']} conversation messages")
print("Memories are still preserved!")
else:
print(f"Failed: {result['error']}")
# Clear all memories (requires manual database reset)
result = agent.clear()
if not result['success']:
print(result['warning'])
for instruction in result['instructions']:
print(instruction)
print(f"Manual command: {result['manual_command']}")
SDK Backup and Restore
Save Current State
# Save with auto-generated timestamp directory
result = agent.save()
if result['success']:
print(f"Backup saved to: {result['path']}")
# Save to specific directory
result = agent.save("./my_project_backup")
if result['success']:
print(f"Backup completed: {result['message']}")
else:
print(f"Backup failed: {result['error']}")
Load from Backup
# Load state from backup
result = agent.load("./my_project_backup")
if result['success']:
print("Memory state restored successfully!")
# All previous memories are now available
else:
print(f"Restore failed: {result['error']}")
Advanced SDK Features
Using Agent as a Callable
# You can call the agent directly like a function
agent = Mirix(api_key="your-api-key")
agent.add("Python is my favorite programming language")
# These are equivalent:
response1 = agent.chat("What's my favorite language?")
response2 = agent("What's my favorite language?") # Callable interface
print(response1) # Same as response2
Chaining Operations
# Initialize and set up memories in one flow
agent = Mirix(api_key="your-api-key")
# Add multiple memories
memories = [
"Team standup every Monday at 9 AM",
"Sprint planning on first Tuesday of each month",
"Code review sessions on Wednesday afternoons",
"Demo day every other Friday"
]
for memory in memories:
agent.add(memory)
# Query the knowledge
schedule = agent("What's our team meeting schedule?")
print(schedule)
Basic Operations (AgentWrapper)
Sending Messages
Simple Text Messages
# Send basic text information
agent.send_message(
message="The moon now has a president.",
memorizing=True,
force_absorb_content=True
)
Multi-Modal Content
MIRIX can process text, images, and voice recordings together:
# Send information with images and voice
agent.send_message(
message="I'm working on a new project about machine learning.",
image_uris=["/path/to/screenshot1.png", "/path/to/screenshot2.png"],
memorizing=True,
force_absorb_content=True
)
Structured Multi-Modal Messages
For complex multi-modal conversations:
# Multi-modal message format
agent.send_message(
message=[
{'type': 'text', 'text': "The moon now has a president. This is how she looks like:"},
{'type': 'image', 'image_url': "base64_encoded_image"}
],
image_uris=["/path/to/image_1", "/path/to/image_2"],
memorizing=True,
force_absorb_content=True
)
Conversational Queries
# Ask questions about your activities
response = agent.send_message("What was I working on yesterday?")
print("MIRIX:", response)
# Get specific information
response = agent.send_message("Show me documents about PostgreSQL")
print("MIRIX:", response)
Understanding Parameters (AgentWrapper)
Memory Management Control
The memorizing
parameter controls where messages are routed:
Value | Destination | Purpose |
---|---|---|
True |
Meta-memory-manager | Store information for long-term recall and knowledge building |
False |
Chat agent | Direct conversation without memory storage |
# Store information for future reference
agent.send_message(
message="Project meeting notes - new feature requirements discussed",
memorizing=True,
force_absorb_content=True
)
# Direct chat without memory storage
agent.send_message(
message="What's the weather like today?",
memorizing=False
)
Content Absorption Control
The force_absorb_content
parameter controls when information is processed:
Value | Behavior | Use Case |
---|---|---|
True |
Process immediately | Important information, real-time updates |
False |
Batch processing (after 20 images) | Regular browsing, background activities |
# Immediate processing for important content
agent.send_message(
message="Critical meeting notes from client call",
memorizing=True,
force_absorb_content=True
)
# Batch processing for regular activities
agent.send_message(
message="Browsing documentation",
memorizing=True,
force_absorb_content=False
)
Input Types and Formats
Message Parameter
Can be either a string or a structured list:
# Simple string
message = "Working on the project documentation"
# Structured multi-modal format
message = [
{'type': 'text', 'text': "Here's the latest design mockup:"},
{'type': 'image', 'image_url': "..."}
]
Image Handling
These are background images that will be treated as screenshots, the agent will not respond to these images, but rather extract information from them and save into memory.
# Use local file paths
image_uris = [
"/Users/username/Screenshots/screenshot1.png",
"/Users/username/Screenshots/screenshot2.png",
]
Voice Files
Under Robustness Test, Coming Soon.
Complete Workflow Examples (AgentWrapper)
Example 1: Daily Work Session
from mirix.agent import AgentWrapper
# Initialize
agent = AgentWrapper("./configs/mirix.yaml")
# Morning briefing
agent.send_message(
message="Starting work day. Today's priorities: finish documentation, review code, team meeting at 2 PM",
memorizing=True,
force_absorb_content=True,
)
# Work activities (batch processing)
agent.send_message(
message="Working on API documentation",
image_uris=["/screenshots/vscode_api_docs.png"],
memorizing=True,
force_absorb_content=False
)
agent.send_message(
message="Code review session with team",
image_uris=["/screenshots/github_pr.png"],
memorizing=True,
force_absorb_content=False
)
# Important meeting (immediate processing all existing accumulated messages)
agent.send_message(
message="Team meeting - discussed Q4 roadmap, new feature priorities",
voice_files=["base64_meeting_recording"],
memorizing=True,
force_absorb_content=True
)
# End of day query
response = agent.send_message("Summarize what I accomplished today")
print("Today's Summary:", response)
Example 2: Research Session
# Research topic introduction
agent.send_message(
message="Researching machine learning optimization techniques",
memorizing=True,
force_absorb_content=True
)
# Reading and capturing research materials
research_screenshots = [
"/screenshots/arxiv_paper1.png",
"/screenshots/arxiv_paper2.png",
"/screenshots/github_implementation.png"
]
agent.send_message(
message="Reading papers on gradient descent optimization",
image_uris=research_screenshots,
memorizing=True,
force_absorb_content=False
)
# Taking notes
agent.send_message(
message=[
{'type': 'text', 'text': "Key insight from the research:"},
{'type': 'text', 'text': "Adam optimizer performs better than SGD for sparse gradients"}
],
memorizing=True,
force_absorb_content=True
)
# Query research findings
findings = agent.send_message("What are the key points about optimization techniques I discovered?")
print("Research Findings:", findings)
What's Next?
Ready to explore more advanced topics?